Login

Lithium but-whatabout... Common marketing inspired mistakes

Misconceptions

These days, everyone has experience with Lithium powered consumer electronics and these experiences might make it hard to believe that Lithium batteries will easily last more than 10 years on a ship. Also, many have heard about Lithium batteries exploding and/or catching fire, and the last thing you need on the middle of the ocean is a big heavy Lithium battery bursting into flames.

image

There are a few explanations for Lithium batteries not living up to their promised performance and luckily none of these issues apply to ships. One key difference is that, unlike on boats, consumer electronics rarely use LiFePO4 batteries. Especially with mobile phones and other gadgets, size is everything, and LiFePO4 batteries just don't posess the best size-to-power ratio. So other types of Lithium batteries are used, which are optimized for size, but not for durability and safety. On a ship however, the Lithium battery doesn't have to fit into a ridiculously thin briefcase and even the "not smallest" LiFePO4 batteries are way much smaller than the lead-acid batteries people are accustomed to.

Durability

If you are like me, you leave your laptop almost always plugged in, and after a year when you want to work "cordless" you discover that the "hardly used" battery doesn't last very long anymore. Also, after one year of use, the battery of the mobile phone lost a significant amount of charge capacity as well. Why is this?

  • Chemistry. LiFePO4 batteries are champions for their durability and most other Lithium types have less capability to cycle than LiFePO4's. But these other types are so thin, which is what the gadget-fashion dictates consumers to like, so you will end up with batteries which have been optimized for size but not for safety and durability.
  • Charging too much. Lithium batteries hate to be fully charged, but yet this is what most people do. You want your flashlight, electric drill, laptop, etc. always "ready" and fully charged. This results in a lithium battery which spends most of its time in a fully charged state. But to remain in a fully charged state is what kills Lithium batteries.
  • Charging too far. Did I mention that size is everything? One way to shrink the size of a battery is to make more "optimal" use of its capacity: to charge it almost to bursting and to discharge it very deeply. Especially charging too far is bad for Lithium batteries. It would be better to have a slightly larger battery and leave a bit of capacity on both ends and get more than double the lifetime out of it, but hey, I might not be the typical consumer.
  • Charging too fast. We all love to be able to charge the darn cell phone in about 2 hours, but this is not the best thing for its longevity. Battery manufacturers, who otherwise like to boost the best possible specifications, usually recommend strongly agains charging the battery with more current than one third of its rated capacity, which means that charging should at least take 3 hours under optimal conditions. Charging too much promotes harmfull lithium plating.
  • Heat. Lithium batteries suffer badly from temperatures anywhere above 30 degrees Celcius, but mobile phones and laptops tend to become quite warm, sometimes almost too hot to touch. High temperatures reduce the lifetime of the batteries significantly. On a ship however, you can place the batteries in a compartment where the temperature never elevates much over the surrounding seawater, which is, even in the tropics, almost never above 30 degrees Celcius.
  • Programmed failure. It is not in the interest of manufacturers that your electronic gadget lasts 10 years or more. In fact, there is evidence that some manufacturers program a "battery degradation" in the software of their gadget and since the battery is (purposedly) non-replacable, it makes it necessary to buy their new model after just one or two years. Well, I have a lot to comment on this practice, but let's just stay on topic...

Safety

Lithium batteries are generally very safe. If something goes badly wrong, there is always some type of mismanagement or abuse involved, (like overcharging, overdischarging, shortcutting), or physical damage (like dropping, overheating). LiFePO4 batteries are the most tolerant as they don't get easily into "thermal runaway" territory but just start venting when they are being abused. There are video's on YouTube where people fire bullets into LiFePO4 batteries, shortcut them, and throw them in fire bins. The LiFePO4-cells just start venting but they don't explode or burst into flames.

In consumer electronics there is usually not much security against malfunctioning of the battery management system. Most of the time, there is no safeguard at all, so if the BMS gives up the ghost, there is nothing left to pull the plug and the battery will either be seriously overcharged or changed into a timebomb by overdischarging. Also, usually batteries are used which are less safe than LiFePO4 batteries.

On a ship, you can (or should have) a secondary BMS which takes over if the primary BMS fails. And you really should stick to LiFePO4 cells. And never ever use cells which have been overdischarged; they are no longer safe to use, even if they appear to have "recovered". In practice this means that you should only buy Lithium cells which are new and buy them from respected sources.

What about a 45mm calibre anti tank weapon?
What about a 45mm calibre anti tank weapon?
Fully charged cells are punched through simulating the shoot-through from a 45mm calibre anti tank weapon. Test was performed by the Chinese army to determine the safety and stability of the lithium cells.

As visible from the photo, the cells remained complete, did not burn, did not set on fire and did not explode.

How do they get away with it?

Ok, you have heard about that company which produces this wonderfull "replacement" Lithium battery which is supposed to be just a drop in replacement for a lead-acid battery. How is this possible?

A drop in replacement means that the Lithium battery can not be disconnected when it becomes fully charged because that would fry your alternator. So apparently this wonder battery doesn't get disconnected at all. I deliberately use the word "get" instead of "need to". If the battery would not need to be disconnected when it is fully charged this would imply a major break through in the Lithium battery world and the manufacturer of that kind of break-through batteries would not bother to try to sell this battery to sailors at all but would aim its marketing towards bigger and more rewarding consumers like the electric car manufacturers and the space and aviation world.
In reality, the number of companies producing big Lithium cells is extremely limited. Practically all Lithium cells are produced by the following three companies: Winston, CALB and Synopoly. They produce the raw cells and one of these brands is typically used by battery manufacturers to assemble "their" battery. There exists no small marine company creating magical cells themselves which deviate from the characteristics described above.

All LiFePO4 cells, regardless of manufacturer, exhibit the same characteristics, clearly described by the respective manufacturer in its specification sheets: The cells get damaged when the charge current is not terminated after the cells become fully charged. There are no exceptions!

So how can the a drop-in replacement at least seem to work for a while?

Firstly, the majority of the boat owners are not live-aboards. Their boats reside in marina’s most of the time, and the batteries are kept in a "float" condition by the shore power battery charger. A float condition decreases the lifetime of lithium batteries but it won't become dangerous very quickly because the output of the charger is usually quite limited and the Lithium battery converts the excess charge current into heat, which is neglible if the charger is not very powerfull. A more caring boat owner just pulls the plug of the charger and powers down the boat completely when docked in the marina. In most cases the Lithium battery is oversized to the needs of that boat owner so he won’t discover anywhere soon that his wonderfull Lithium battery detoriated quickly to less than 50% of its rated capacity. Even then, most people are, sadly, used to the fact that in just one year time the Lithium battery of their smartphones and laptops also shows signs of aging, so although it is a disappointment, it doesn't come fully unexpected.

image

Things get however more problematic in the cruisers and live-aboards world. Sometimes it works on small ships with a small solar charger and an owner who doesn't run the engine for anything more than manouvring at the anchor spot. But many cruisers install big output alternators, 140 Amps is not rare. Double that for catamarans with their dual engines. And the engines are often not used just for manouvring in the marina or to "get home" from a one hour distance, but sometimes run nonstop for days to escape from a large no wind zone on the Pacific. No way you can keep feeding this amount of power nonstop into a fully charged lithium battery without risking a meltdown.
The other power sources are just as unpredictable. Solar arrays are ideally oversized to provide enough power in partly clouded situations, but provide way too much power during a sunny day, especially when the owners are out shopping of exploring some island and not consuming any power. The more one optimizes the situation, the less likely the drop-in Lithium battery is going to fulfill its expectations.

Then of course there is the risk of overdischarging which turns lithium cells into timebombs, which will inevitable happen at some point because the BMS (if there is one) is incapable of disconnecting the load because there is simply no disconnection-relay in the circuit.

Common mistakes

The following, often marketing inspired, mistakes are often made:

  • Going too easy. Some companies offer "drop in" replacement lithium batteries which supposedly can be used to replace your exhausted lead-acid batteries with no system modifications other than maybe an "adjustment of the charge voltage". Although this sounds very attractive, voltage based charge regulation is impossible to work on the long term because lithium- and lead-acid batteries have entirely different charge demands, far beyond just "adjusting the charge voltage".
  • Going too complex. Some companies sell lithium batteries which work only reliably when you buy their entire line of alternator-regulators, grid-chargers, inverters, solar-chargers, batterymonitors, etc as well and redesign and reinstall your entire electrical system into a dual bus topology for even more costs. This works, but it is not neccesary to spend that much money to get a well working system.
  • Buying too much capacity. You want to do it "right", so at least you buy the same amount of amp-hours you previously had in lead-acid batteries, right? Well, no... If you cared for your lead-acid batteries you never discharged them more than 30%. So this means that you had roughly only 33 Amp-hours of usefull energy from each 100Ah installed capacity. But lithium batteries can be used for about 80% of their rated capacity, so you get 80Ah out of each 100Ah installed capacity. If you previously had 400Ah of lead-acid capacity, you will only now need about 150Ah of lithium capacity. And this is a case where more isn't better: Lithium batteries wear out prematurily if they are kept in a too high charge state for too much time. Having too many Amp-hours installed means that the batteries never get depleted deeply enough and spend most of their time in a highly charged state, which is detrimental to their health.
  • Buying an expensive brand. Sales men claim their "own brand" is better than the brand from the competitor. However, none of the major sellers produce their own Lithium cells, but they assemble their batteries with Lithium cells from one of the only three (Chinese) manufacturers: Winston, CALB or Synopoly. All these cells have roughly the same specs and the same high quality. You can save a substantial amount of money if you buy these cells directly from the manufacturer or importer.
  • Buying too cheaply. You might find attractive offers for used batteries, or batteries from crashed EV's, or whatever. Although these batteries might be fine, they might also be not. Especially batteries which have been overdischarged might have been changed into a timebomb and there is no way to establish the history of the cells for sure. Batteries from a crash might have invisible internal structural damage which will outplay its plot after some movement on the ocean. Used batteries might be acceptable for use in a barn, at least you can run away when things go sour. But on the ocean you don't want to sail with an embedded timebomb.
  • Using an inadequate BMS. From cordless drills to Tesla's, the vast majority of Lithium powered devices are either being charged or in use, but never at the same time! The BMS just has to monitor the cell voltages and doesn't get disturbed by varying charge currents and loads switching on and off all the time. Things are much more complex on a ship: The charge current is usually variable to begin with (varying RMP of alternators and wind generators, clouds and shadows on solar panels) and during charging equipment continues to consume power with loads switching on and off all the time and often even consuming more than the available charge current. As a result, the cell voltages fluctuate quite a bit and the BMS has to observe the currents as well to make any sense out of it. A simple voltage sensing BMS is simply not up to the task. Mind you, the BMS might be sold as "advanced" with features like a bluetooth interface but it doesn't mean that it correctly works with the complex situation on a ship. Most BMS systems being sold for a ship are not designed for a ship but derived from some already existing BMS.

Comments

Name:
Email:
Characters left:


Hi, I'm interested in your BMS! I’d be very interested in a 12v version. Please add me to your list. Dank u wel.
0
0

I would like to build this project myself, any chance of sharing the software and schematics as suggested on Github?
0
0

Hello Frans, I just want to suggest also to give a look at the BOS LE 200 manual that makes what you already designed with your BMS. https://www.manual.bos-ag.com/le300/ One interesting feature of BOS battery is the sleep mode to avoid deep discharge of the Lithium battery. I don't know if you have already thought to this with "Extensive voltage checking on cell level" or not, anyway I took the occasion to highlight the manual to you! Thanks again Daniele
0
0

Hello Frans! I'm very interested in purchasing your BMS for my boat (if you are going to sell it, of course). I have also some contacts to distribute it in Italy, if you want :) Please let me know if you could be interested. May you have fair winds and following seas! Daniele
0
0

Beste Frans, jouw aanpak lijkt precies datgene wat ik zoek: een LifePo4-aanvulling op mijn loodaccu's (360 Ah) die zonder heel veel gedoe kan worden ingepast in het (12V-)systeem. Lever je kant en klaar (met/zonder LifePo4-accu), en wat zou dit dan moeten kosten? Ik verneem het graag om zo de afweging te kunnen maken.
0
0

In respect to Lithium-hybrid, I see two problems that difficult his implementation: *You need special alternators that can work with Lihium banks (with temperature sensors and external regulated). *Due to his different internal resistance, until the Lithium don't reach his maximum charge the lead bank will be unable to be charged.... that can result in a bad SOC of the lead bank during too much time.
0
0

Hallo Frans,ik ben zeer geïnteresseerd in de door jouw ontworpen BMS en dan wel de Pro versie. Ik heb momenteel 420 amp loodaccu's en heb 8 cellen Eve 304 besteld. Verder heb ik 1600 watt solar panels.
0
0

Any possibility of a 48v version to manage a bank for powering a propulsion motor (as opposed to just a "house bank")?
0
0

https://www.zwerfcat.nl/en/bms-news.html Project was revived April 2022, according to that blog.
0
0

I’m also very interested in this project but also cautious because of the lack of updates. Maar hé, wel een geweldig project!
0
0

Hello I.m interested on the assemble version of the OHybridBMS. The project you made is great, thanks for the work, really usable
1
0

Hi Frans, did you build this OpenHybridBMS? I want to buy it!
4
0

Hi, I expressed interest in your BMS more than a year ago - maybe 2! I’d be very interested in a 12v version. Please add me to your list. Dank u wel.
6
0

Hi...really useful, and a set up I hope to build into a new UK canal boat soon. However can anyone advise as to how we then monitor the combined battery, ie which do I watch, and how to know when charged (or needs charging). Expecting to use Victron BMV 702 energy display Thanks
0
0

Hi Neil, I'm looking at fitting the hybrid system and wondered if you managed to get it up and running,and how it's doing?
0
0

Is there any news with this BMS project? I'm very interested in either buying or building one.
1
0

Goedendag, We zijn erg geïnteresseerd  in de pro-versie van de BMS voor 24 volt. Kun je een indicatie geven wanneer deze leverbaar is en wat deze gaat kosten?
0
0

Is de pro-versie van de BMS beschikbaar? En werkt de hybrid Lithium aanpak zoals verwacht? Ziet er zeer doordacht uit en zou graag zelf willen ervaren.
0
0

Its very iteresting concept. However in my opinion the voltage difference between lead-acid and lithium batteries will cause the lithium battery continiusly charging lead-acid battery. To stop that from happening you need a diode to be placed at the positive terminal of the lead-acid battery.
8
-1

No, the voltage of a fully charged lithium battery is less than the voltage needed to charge a lead acid battery. The lead acid battery will very quickly settle on the "float voltage" presented by the lithium battery, and current will stop flowing.
2
0

Please note the depth of discharge graph in the top of the article (red line) shows discharge curve for lifepo4 (13.7V when fully charged) chemistry not traditional Li-Ion (12.6V when fully charged). Li-Ion chemistry has more linear dicharge curve that looks closer to Lead-acid. Therefore the Li-Ion therm in this artical is sort of mental shortcut more then actual chemisrty name.
1
0

When talking about lead acid, does this include Gel and AGM types, they have slightly different charge profiles to typical Lead Acid chemistries, but will they still work in this situation for a hybrid setup?
0
0

Is this a dead project? There's been no update on Github for 2 years and Frans hasn't commented for 6 months.
9
0

Is de pro-versie van de BMS beschikbaar? En werkt de hybrid Lithium aanpak zoals verwacht? Ziet er zeer doordacht uit en zou graag zelf willen ervaren.
0
0

Any chance of you publishing what you have at the moment on GITHUB? This would allow others to peer review, build, and suggest modifications.
5
0

I am very interested in the BMS Pro system. Is this still an active project? The GitHub repository shows no activity for a while.
3
0

There are various FB groups dedicated to electrics on boats/motorhomes and LFP battery installations. Much is said about having to control or replace the alternator as it risks burning out with LFP, even in a hybrid system. I have installed LFP and kept the system as a hybrid by keeping the old LA batteries. You say that the system needs no modification. Can you reassure me! Thank you. Great articles, by the way.
0
0

Very interested in this. When are you going to publish on Github? and any idea of when the Pro will be available and cost yet?
1
0

1 more comment: my LA and Li battery banks each have their own charging source (LA - solar, LI - wind). The plan is to connect both the LA +/- outputs to the single +/- inputs of a substantial DC to AC inverter. Any comments or thoughts?
0
0

I am going to build this. Parallel connection from each battery type to a single inverter. Inverter has + / - terminals and the Lithium + along with the L Acid + to the inverter +, and same with the negatives. This should work as the author describes, I believe. Any comments?
1
0

I'd love to have a go at building your BMS, when you're happy with it would you mind posting the details of how you built it so others can copy it
2
0

We would be interested in purchasing a Pro Unit.
0
0

Is this Open design available to the public for rebuild?
3
0

Also very interested in the BMS Pro system. Please let me know when it is available. Thank's
1
0

Frans, what you say doesn't fit publishedcapacity/voltage curves of LFP batteries. Check this: https://www.solacity.com/how-to-keep-lifepo4-lithium-ion-batteries-happy/ You see in the 2. plot the 12V version with 13V at 40% LFP capacity. If you discharge from, say, 90% to 40% that leaves you with only 50% of the possible 80% LFP capacity. So loweing the discharge cutoff to 12.6V would still leave the LA batt. rather full and deplete LFP to 15%. Much better!
0
0

Hi Frans, thanks for suggesting this simple solution! Why would you want to develop your own BMS? Can't you simply use one that is available like Electrodacus? https://www.youtube.com/watch?v=TrTu9uehOFg you can set the cut-in low voltage separate from the low cut-off voltage, you can set the high cut-off voltage and many more. It also has a battery overtemp protection aswell as an batt undertemp protection (LFP batt should be chared above 5°C only). The starter batt can then float when LFP is full.
1
0

Nice article. 1 remark though about charging. You can FloatCharge CCCV lithium @ < bms-cut-off-voltage till it's saturated at the voltage setpoint. Advantage hereof is that the battery bms never disconnect the (solar)charger. Under floatcharge I mean just charging with one voltage set-point, e.g @ 14.0v for a 12v battery. Good idea or not?
0
0

Very interested in the pro system.
0
0

Your BMS sounds very promising and perfect for our situation. Please add us to your list, and thanks
0
0

I'm very interested in your BMS when you start making them, can you notify me with a price when they're ready
0
0

I’d be interested in the pro system. What price roughly? Thank you.
0
-1

Frans Veldman
Sorry, I have no insight yet in the cost of a small production run.
3
0

what happens if say the alternators are pumping out 100amps+ I seem to see 50amps as max charge on most .Lithiums?
1
0

Frans Veldman
My BMS will disconnect the lithium battery if the charge current is too high. Ofcourse it is better to dimension the system in such a way that the charge current is compatible with the lithium batteries.
0
0

So if I fix cables of a size that would restrict current, say 35qm. Would that keep the BMS happy?
0
0

Hi there, enjoying your articles, thanks. Does the alternator voltage need to be adjusted in order to run a hybrid system? I have one boat which has an alternator which outputs 14.4v, and one which outputs 14.8v via an external regulator. Would these be compatible with a hybrid system?
2
-1

Frans Veldman
As long as the lithium battery is charging, the voltage will not be able to go up because the lithiums are absorbing all available current. The BMS will disconnect the lithium battery as soon as it is fully charged. After that, the alternators etc can do just their own thing, increasing the voltage to whatever value they want. So the programmed voltage doesn't matter for the lithium battery, as long as it is higher than the voltage of the lithium charge voltage.
0
0

I am very interested in your BMS. You have a very well thought out system but I noticed on GitHub there are no recent postings. Where do you stand on development? Thank you.
0
0

Frans Veldman
I have been unavailable for a while, but I will soon continue the project. I'm in the process of developing the PCB's. The prototype is working fine on our ship!
0
0

Hi Frans - I am very interested in this because I would like to add a LiFePO on my canal boat. It has twin alternators, a 35A for the starter battery (110Ah SLA) and a 70A for "house" batteries (345Ah SLA). My idea is to connect a LiFepO (120Ah) in parallel with the starter battery for charging via a VSR (ie "split-charging") only when the engine is running, via an ignition controlled changeover relay, which then connects the LiFePo in parallel to the house bank when the engine stops. Any comments?
0
0

Frans Veldman
I'm not sure why you would be doing that?
1
0

Nice work, i too have built a Battery Monitoring system based on a Particle Photon and the ADS1115 with voltage dividers, amazed to discover such a similar approach. I push the data out to Thingspeak with a web hook.
1
0

I have been looking for information about using LFP and LA in parallel and happened upon your comment in the DIY Mobile Solar forum. I have just an off-grid cabin, and this is exactly what I have been dreaming about - a hybrid solution for multiple charging sources at 24v, robust and temperature variable (central plains of the USA here). This solves practically all of my issues. Although I am not much of a help with coding I will follow along eagerly. Thanks so much!
1
0

So, when the lithium pack switches off because of low voltage, how does it recognize that it is ok to switch on again? Manually? If you have two circuits (charge and discharge) like usually with LF packs, you will need to redesign a lot.
0
0

This is a good question. I assume that when the charging source raises the LA voltage to an acceptable level for the Lithium BMS to "reopen" for business. Correct?
0
0

Frans Veldman
If the lithium is disconnected, the BMS will continue to monitor the bus voltage. As soon as it rises above the lithium battery voltage, it reconnects the lithium battery to the bus.
0
0

We both seem to have adopted exactly the same approach. I too use esp8266 and wireless connection for everything including remote displays, web interface, remote monitoring, etc etc.i have the hybrid BMS as a stand alone unit that can perform all required protection and control of the battery environment and that communicates via MQTT with a Pi and direct to other esp control units including proportional dump load control and various other power control and optimising systems. I think hybrid rocks!
2
0

Dank je wel voor een zeer interessant artikel!
0
-1

Frans, finally someone who sees a hybrid system with the same view! I have been struggling with some of the same questions, even the same thoughts about hardware for a BMS. I would enjoy hearing more as you move forward, and could possibly work on the Pro a bit. I am not an EDA expert, but I have worked with it a bit.
0
0

Frans we zijn zelf bezig met het voorbereiden van een li ion verhaal. Wat ons nog niet duidelijk is, is hoe je omgaat met je alternator. De meeste alternatoren branden door als ze li ion laden zonder dat er een regeling is in functie van de temperatuur ten gevolge van de hoge laadstroom? Hoe vangt jouw systeem dat op? Voor ons is juni 2021 of 2022 de vertrekdatum en hopen we jullie ergens in de pacific nog te ontmoeten. Bert (schip: Evarne)
0
0

Well, for what it's worth: there is not much you can do about the heat dissipation in a 12V alternator. You can switch to a 24V system (half the amperage and heat at the same wattage), get a large frame alt, get an oil cooled alt, get a double fanned alt, lay a vent hose to the back of the alt fan-ventilated. Limit the amperage by an external regulator like Balmart.
0
0

Lädt man die Lions über einen BtoB Ladebooster z.Bsp.BB1260 Sterling brennt die Lima nicht durch da ja nicht mehr als 60A geliefert werden.
0
0

contact