Login

Lithium advantages The advantages of Lithium batteries

In this article we will discuss "Lithium batteries". In fact there is a whole family of "Lithium batteries", all with a specific chemistry tailored for a specific use, optimised for weight, size, voltage and/or temperature range, etc. For use on sailing boats, only LiFePO4 (also sometimes referred to as LFP) is a sensible choice. In this article read "LiFePO4" wherever we write "Lithium". The statements made might not apply to other types of Lithium batteries.

Comparison

If you own a sail boat which spend most of its time off grid, you are probably very aware of the problems associated with lead-acid batteries. Let's compare them with Lithium batteries, side by side:

Durability

image
Lead-acid batteries
Lead-acid batteries on sail boats typically don't last very long. Lead-acid batteries perform very well to generate short term heavy current, like for starting an engine. They also last very long when they just need to provide backup power very occasionably. In both situations the lead-acid batteries spend most of their life fully charged. But lead-acid batteries hate to be discharged, and they hate to have to cycle (from charge to discharge and back again). Most manufacturers specify somewhere about 500 cycles, which is, with a daily cylce, a lifetime of less than 2 years! There is not much that can be done about it, it is just their chemistry which make them suffer from each single charge-discharge cycle and spending any time in a discharged state.
Lithium batteries
Lithium batteries love to cycle. They can perform a virtually infinite amount of cycles. The specifications often claim 5000 cycles and with very good care for the battery, it can be even more. But Lithium batteries hate to spend much time in a fully charged state. You might have bad experiences with Lithium batteries in consumer electronics, the typical "hardly ever used" batteries. This is usually due to the common mistake to charge these batteries after each use and let them spend most of their time in a fully charged state. On a sail boat, where the batteries are being discharged every night, the Lithium batteries will not suffer from spending too much time in a fully charged state, especially if the capacity is choosed wisely (not much more capacity than actually needed) and a good Battery Management System is being used.

Economy

image
Lead-acid batteries
Because lead-acid batteries usually don't last very long on an off grid sailboat, they are not an economic choice, despite their lower price. The lifetime is about 500-1000 cycles, provided you don't discharge them too deeply. The deeper the discharge, the shorter their lifetime. To get any meaningfull life out of lead-acid batteries, you can only use 30% or even less of the rated Amp-hours capacity.
Lithium batteries
Lithium batteries might be more expensive, until you realise that you can safely use 80% of their rated Amp-hours capacity. In practice, this means that to replace a 600 Ah lead-acid battery (which you could only discharge for 30%, which is about 200Ah), a 250 Ah Lithium battery (which can be discharged for 80%, which is 200Ah) will give you exactly the same usable capacity. Also, it lasts much longer, at least 3 to 5 times. If you don't buy the Lithium batteries from a marine shop but directly from the importer, and make the very conservative assumption that the battery will last 10 years, the lithium battery is by far the most economic choice.

Weight

Lead-acid batteries
The typical specific energy is 33-42 Wh/Kg. With about 30% usable capacity, this would equate to 10-13 Wh/Kg.
Lithium batteries
The typical specific energy is 100 Wh/Kg. With about 80% usable capacity, this would equate to 80 Wh/Kg.

This means that the lead-acid batteries are 6 to 8 times heavier per Wh storage than their lithium cousins. That might be important, especially on fast boats. After all, for every kilo of "boat", you will have to displace 1 kilo of water to move forward, which translates into drag...

Lead-acid charge curve
Lead-acid charge curve
From around 80% SOC upwards, the charge voltage reaches a ceiling and consequentially the charge current drops of sharply. It takes a long time to increase the SOC from 80% to 100% because the battery doesn't accept the full available charge current anymore.

The trajectory under A is called "bulk phase", B is called "absorption phase".

Charging

Lead-acid batteries
Lead-acid batteries suffer from a very frustrating charge curve: From around 80% of charge upwards, they don't accept the full available charge current anymore. In technical terms they transit from "bulk charge" to "absorption fase" (which we used to call "spoon feeding" on our sailboats). It is frustrating to have a very powerfull alternator or a high capacity solar array and not seeing the full charge rate going into the batteries. The battery voltage is limited to around 14.4 Volts (depending on configuration) and the current has to taper of to prevent exceeding that voltage. At the end of the charge, hardly any current is going into the batteries anymore.
Lithium batteries
Lithium batteries accept the full available charge curve up to the point where they are 100% charged. You don't have to run your engine/generator so long anymore. In fact, you have to be careful not to burn out your alternator, because the Lithium batteries absorp much more power than you have ever seen flowing into your lead-acid batteries.

Discharging

Discharge curve: Lithium-Ion vs Lead-Acid
Discharge curve: Lithium-Ion vs Lead-Acid
Lead-acid batteries
The output voltage of lead-acid batteries is depending on load and state of charge, and in general the output voltage during discharge is much lower than the voltage during charging. Also, the output voltage sags substantially when you switch on a heavy load and you will see the lights flicker.
Lithium batteries
The voltage curve of Lithium batteries is nearly flat over most of its capacity. From about 20% State Of Charge up to 90% SOC the voltage will stay around 13 Volts. It is higher than the discharge voltage of lead-acid batteries and also more stable. At the same time, Lithium batteries have a lower internal resistance so the voltage doesn't sag very much when you switch on a heavy load.

Safety

You might have heard about the safety hazards of "Lithium batteries". Most problems however are associated with other Lithium batteries chemistries than LiFePO4, and usually some type of mismanagement is involved. In reality, LiFePO4's are the most safe Lithium batteries known. Read more about this in our article Lithium-butwhatabout.


Comments

Name:
Email:
Characters left:


Beste Frans, ik heb interesse in het Lithium hybride systeem. Ik ben zelf niet technisch genoeg om het zelf te bouwen. Zijn er mogelijkheden voor een 24 volt systeem? Alvast dank!
0
0

Beste Frans, ik heb interesse in het Lithium hybride systeem. Ik ben zelf niet technisch genoeg om het zelf te bouwen. Zijn er mogelijkheden voor een 24 volt systeem? Alvast dank!
0
0

Beste Frans, ik heb interesse in het Lithium hybride systeem. Ik ben zelf niet technisch genoeg om het zelf te bouwen. Zijn er mogelijkheden voor een 24 volt systeem? Alvast dank!
0
0

Hi, I'm interested in your BMS! I’d be very interested in a 12v version. Please add me to your list. Dank u wel.
0
0

I would like to build this project myself, any chance of sharing the software and schematics as suggested on Github?
0
0

Hello Frans, I just want to suggest also to give a look at the BOS LE 200 manual that makes what you already designed with your BMS. https://www.manual.bos-ag.com/le300/ One interesting feature of BOS battery is the sleep mode to avoid deep discharge of the Lithium battery. I don't know if you have already thought to this with "Extensive voltage checking on cell level" or not, anyway I took the occasion to highlight the manual to you! Thanks again Daniele
0
0

Hello Frans! I'm very interested in purchasing your BMS for my boat (if you are going to sell it, of course). I have also some contacts to distribute it in Italy, if you want :) Please let me know if you could be interested. May you have fair winds and following seas! Daniele
0
0

Beste Frans, jouw aanpak lijkt precies datgene wat ik zoek: een LifePo4-aanvulling op mijn loodaccu's (360 Ah) die zonder heel veel gedoe kan worden ingepast in het (12V-)systeem. Lever je kant en klaar (met/zonder LifePo4-accu), en wat zou dit dan moeten kosten? Ik verneem het graag om zo de afweging te kunnen maken.
0
0

In respect to Lithium-hybrid, I see two problems that difficult his implementation: *You need special alternators that can work with Lihium banks (with temperature sensors and external regulated). *Due to his different internal resistance, until the Lithium don't reach his maximum charge the lead bank will be unable to be charged.... that can result in a bad SOC of the lead bank during too much time.
0
0

Hallo Frans,ik ben zeer geïnteresseerd in de door jouw ontworpen BMS en dan wel de Pro versie. Ik heb momenteel 420 amp loodaccu's en heb 8 cellen Eve 304 besteld. Verder heb ik 1600 watt solar panels.
0
0

Any possibility of a 48v version to manage a bank for powering a propulsion motor (as opposed to just a "house bank")?
0
0

https://www.zwerfcat.nl/en/bms-news.html Project was revived April 2022, according to that blog.
0
0

I’m also very interested in this project but also cautious because of the lack of updates. Maar hé, wel een geweldig project!
0
0

Hello I.m interested on the assemble version of the OHybridBMS. The project you made is great, thanks for the work, really usable
1
0

Hi Frans, did you build this OpenHybridBMS? I want to buy it!
4
0

Hi, I expressed interest in your BMS more than a year ago - maybe 2! I’d be very interested in a 12v version. Please add me to your list. Dank u wel.
6
0

Hi...really useful, and a set up I hope to build into a new UK canal boat soon. However can anyone advise as to how we then monitor the combined battery, ie which do I watch, and how to know when charged (or needs charging). Expecting to use Victron BMV 702 energy display Thanks
0
0

Hi Neil, I'm looking at fitting the hybrid system and wondered if you managed to get it up and running,and how it's doing?
0
0

Is there any news with this BMS project? I'm very interested in either buying or building one.
1
0

Goedendag, We zijn erg geïnteresseerd  in de pro-versie van de BMS voor 24 volt. Kun je een indicatie geven wanneer deze leverbaar is en wat deze gaat kosten?
0
0

Is de pro-versie van de BMS beschikbaar? En werkt de hybrid Lithium aanpak zoals verwacht? Ziet er zeer doordacht uit en zou graag zelf willen ervaren.
0
0

Its very iteresting concept. However in my opinion the voltage difference between lead-acid and lithium batteries will cause the lithium battery continiusly charging lead-acid battery. To stop that from happening you need a diode to be placed at the positive terminal of the lead-acid battery.
8
-1

No, the voltage of a fully charged lithium battery is less than the voltage needed to charge a lead acid battery. The lead acid battery will very quickly settle on the "float voltage" presented by the lithium battery, and current will stop flowing.
2
0

Please note the depth of discharge graph in the top of the article (red line) shows discharge curve for lifepo4 (13.7V when fully charged) chemistry not traditional Li-Ion (12.6V when fully charged). Li-Ion chemistry has more linear dicharge curve that looks closer to Lead-acid. Therefore the Li-Ion therm in this artical is sort of mental shortcut more then actual chemisrty name.
1
0

When talking about lead acid, does this include Gel and AGM types, they have slightly different charge profiles to typical Lead Acid chemistries, but will they still work in this situation for a hybrid setup?
0
0

contact